math problem?

2016-01-30 5:07 am
By differentiating the function lnx/x ,or otherwise, prove that if e ≤a<b then a^b>b^a

回答 (1)

2016-01-30 5:32 am
✔ 最佳答案
By differentiating the function (ln x) / x,
[(ln x) / x]' = (1/x) / x - (ln x) / x² = (1 - ln x) / x²

If x ≥ e, (1 - ln x) / x² ≤ 0
∴ (ln x) / x is decreasing when x ≥ e
(ln a) / a > (ln b) / b
b ln a > a ln b
ln (a^b) > ln (b^a)
a^b > b^a


收錄日期: 2021-04-20 16:13:32
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160129210748AAa7kfl

檢視 Wayback Machine 備份