∫(xe^x+sin (πx/4))dx?
回答 (2)
∫(xe^x+sin (πx/4))dx = ∫ x e^x dx + ∫ sin ( πx/4) dx
∫ x e^x dx
Integrate by parts
dv= e^x dx; v= e^x
u = x; du = dx
∫ u dv = u v - ∫ v du
∫ x e^x dx = x e^x - ∫ e^x dx
∫ x e^x dx = x e^x - e^x
∫ sin ( πx/4) dx
Let u= πx/4
du = (π/4) dx
dx = (4/π) du
∫ sin ( πx/4) dx = (4/π) ∫ sin(u) du
= (-4/π) cos(u)
= (-4/π) cos(πx/4)
∫(xe^x+sin (πx/4))dx = x e^x - e^x + (-4/π) cos(πx/4)
= x e^x - e^x - (4/π) cos(πx/4) + C
∫(xe^x+sin (πx/4))dx
= ∫xe^x dx+ int sin (πx/4)dx
= I + J
Integration of parts
I = int xe^x dx
set u = x , du/dx = 1
dv = e^x dx , v = e^x
I = xe^x - int 1.e^x dx
= xe^x - e^x
J = int sin (πx/4)dx
set u = pi x/4
du = pi/4 dx
then J = int sin (u) *4/pi du
= -4cos(u)/pi
= -4 cos(pix/4) /pi
∫(xe^x+sin (πx/4))dx = I + J
= xe^x - e^x -4 cos(pix/4) /pi + c
收錄日期: 2021-05-01 15:53:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160129093119AAjH58S
檢視 Wayback Machine 備份