prove 1-cosx/1+cosx=(cosx-cscx)^2?

2016-01-18 2:42 pm

回答 (4)

2016-01-18 3:25 pm
✔ 最佳答案
1-cosx/1+cosx=(cosx-cscx)^2
LHS=1-cosx/1+cosx=
=(1−cosx)(1−cosx)/{(1+cosx)(1−cosx)}
=(1−cosx)²/(1−cos²x)
=(1−cosx)²/sin²x
RHS =(cosx-cscx)²=(cosx-1/sinx)²
=(sinxcosx-1)²/sin²x
Hence LHS ≠RHS
Given identity is false
2016-01-18 3:18 pm
are you sure about the question, it isn't right when i substitute numbers into x
2016-01-18 2:53 pm
false identity.

Let x=pi/3
LHS = (1/2) / (3/2) =1/3

RHS = (1/2 - 2/sqrt(3))^2 =0.4286
2016-01-18 2:52 pm
Making assumptions about where parentheses should be,
(1 - cosx)/(1 + cosx) =
(1 - cosx)/(1 - cosx) * (1 - cosx)/(1 + cosx) =
(1 - 2cosx + cos^2x)/(1 - cos^2x) =
(1 - 2cosx + cos^2x)/sin^2x =

(cosx - cscx)^2 =
(cosx - 1/sinx)^2 =
cos^2x - 2cosx/sinx + 1/sin^2x =
cos^2x sin^2x/sin^2x - 2cosx sinx/sin^2x + 1/sin^2x =
(1 - 2cosx sinx + cos^2x sin^2x)/sin^2x

They're not equal.


收錄日期: 2021-04-18 14:29:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20160118064215AA3JYuT

檢視 Wayback Machine 備份