✔ 最佳答案
(1) 0 = (x^2+y^2)dx - 2xydy
= x^2*dx - [x*d(y^2) - y^2*dx]
= dx - [x*d(y^2) - y^2*dx]/x^2
-c = ∫dx - ∫d(y^2/x) = x - y^2/x
y^2/x = c + x
y^2 = x(c+x)
y(x) = +- √[x(x+c)]
(2) y" - 2y' + y = 6x^2*exp(-x)
0 = D^2 - 2D + 1 = (D - 1)^2
D = 1, 1
yh(x) = (a+bx)*e^x
yp(x) = 6x^2*exp(-x)/(D-1)^2
= e^x∫∫6x^2*exp(-2x)dx*dx
= -6*e^x∫exp(-2x)*(x^2/2 + x/2 + 1/4)dx.....Note
= -6e^x{∫exp(-2x)x^2*dx/2 + ∫exp(-2x)xdx/2 + ∫exp(-2x)dx/4}
= 6e^x*exp(-2x){(x^2/4+x/4+1/8) + (x/4+1/8) + 1/8}
= 6*exp(-x)*(x^2/4 + x/2 + 3/8)
= 3*exp(-x)*(x^2/2 + x + 3/4)
y(x) = (a+bx)*e^x + 3*exp(-x)*(x^2/2 + x + 3/4)
Note: a = -2
∫x*e^(ax)dx = e^(ax)*(x/a-1/a^2) = -exp(-2x)*(x/2 + 1/4)
∫x^2*e(ax)dx =e^(ax)*(x^2/a-2x/a^2+2/a^3)
= -exp(-2x)*(x^2/2 + x/2 + 1/4)
(3) L^-1{2πs/(s^2+π^2)^2} = ?
L{t*f(t)} = -F(s)'
L{sin(πt)} = 1/(s^2+π^2) = F(s)
F(s)' = -2s/(s^2+π^2)^2
L{t*sin(πt)} = 2s/(s^2+π^2)^2
L{πt*sin(πt)} = 2πs/(s^2+π^2)^2
Answer: L^-1{2πs/(s^2+π^2)^2} = πt*sin(πt)
(4) x1 = (0 1 1 1), x2 = (1 0 1 1)
cosQ = x1.x2/|x1*|x2|
= (0 + 0 + 1 + 1)/√(1+1+1)*√(1+1+1)
= 2/√3*√3
= 2/3
Q = acos(2/3)
= 0.666667
= 48.2 degrees