1/(2^10+1)+1/(2^10+2)+1/(2^10+2^2)+1/(2^10+2^3)+1/(2^10+2^4)+...+1/(2^10+2^20)=?

2015-12-30 1:52 pm

回答 (1)

2015-12-30 4:19 pm
考慮 1/(2¹º+2ⁿ) + 1/(2¹º+2²º⁻ⁿ)


  2¹º + 2ⁿ + 2¹º + 2²º⁻ⁿ
= ───────────────
 (2¹º + 2ⁿ) (2¹º + 2²º⁻ⁿ)


     2¹¹ + 2ⁿ + 2²º⁻ⁿ
= ──────────────────────
  2¹º 2¹º + 2¹º(2ⁿ + 2²º⁻ⁿ) + 2ⁿ 2²º⁻ⁿ


  2¹¹ + 2ⁿ + 2²º⁻ⁿ
= ────────────── = 1/2¹º
  2²¹ + 2¹º(2ⁿ + 2²º⁻ⁿ)

故原式
= [1/(2¹º+1) + 1/(2¹º+2²º)] + [1/(2¹º+2) + 1/(2¹º+2¹⁹)] + ... + [1/(2¹º+2⁹) + 1/(2¹º+2¹¹)] + 1/(2¹º+2¹º)
= 10/2¹º + 1/2¹¹
= 21/2¹¹


收錄日期: 2021-04-20 16:09:24
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151230055224AATIE6D

檢視 Wayback Machine 備份