✔ 最佳答案
1. y'+2y=4e^x
P(x)=2
I=e^∫P(x)dx=e^2x
(ye^(2x))'= 4e^(3x)
ye^(2x) = ∫4e^(3x) dx
ye^(2x) = (4/3)e^(3x) + C for C is a constant
y = (4/3)e^x + Ce^(-2x)
==========================================================
2. y''+3y'+2y=2x²
y''+3y'+2y=0..............homo
Let y = e^(rx)
y'=re^(rx)
y''=(r^2)e^(rx)
(e^(rx))(r^2+3r+2)=0
(r+1)(r+2)=0
r=-1 or -2
y_c(x)=C1e^(-x) + C2e^(-2x) for C1 and C2 are constant..............homo sol
y''+3y'+2y=2x²..............particular
Let Y = Ax^2 + Bx + C
Y' = 2Ax + B
Y'' = 2A
input Y, Y', and Y'' into y''+3y'+2y=2x² we get
2A + 3(2Ax+B) + 2(Ax^2 + Bx + C) = 2x^2
解放程式
得到
A=1/2
B=-3/2
C=7/4
因此得到
Y = Ax^2 + Bx + C
Y = (1/2)x^2 + (-3/2)x + 7/4..............particular sol
最後
把homo sol加上particular sol得到
y(x) = y_c(x) + Y
y(x) = C1e^(-x) + C2e^(-2x) + (1/2)x^2 + (-3/2)x + 7/4
==========================================================
3. y''+2y'-3y=e^x
y''+2y'-3y=0..............homo
Let y = e^(rx)
y'=re^(rx)
y''=(r^2)e^(rx)
(e^(rx))(r^2+2r-3)=0
(r^2+2r-3)=0
(r+3)(r-1)=0
r=-3 or 1
y_c(x)=C1e^(-3x) + C2e^(x) for C1 and C2 are constant..............homo sol
y''+2y'-3y=e^x ..............particular
Let Y = Axe^x
Y' = Ae^x + Axe^x
Y'' = 2Ae^x + Axe^x
input Y, Y', and Y'' into y''+2y'-3y=e^x we get
(2Ae^x + Axe^x) + 2(Ae^x + Axe^x) - 3(Axe^x) = e^x
4Ae^x = e^x
解放程式
得到
A=1/4
因此得到
Y = Axe^x
Y = (1/4)xe^x..............particular sol
最後
把homo sol加上particular sol得到
y(x) = y_c(x) + Y
y(x) = C1e^(-3x) + C2e^(x) + (1/4)xe^x