Can someone pls help me solve this Jacobian. Let x^3 + y^3 = u+v, x^2+y^2 = u^3+v^3, prove that J ((x,y)/(u,v)) = 1/2((y^2-x^2)/2uv (u-v)).?
回答 (2)
Let F = x^3 + y^3 - u - v = 0
and G = x^2 + y^2 - u^3 - v^3 = 0.
Then, ∂(x,y)/∂(u, v) = -[∂(F, G)/∂(u, v)] / [∂(F, G)/∂(x, y)].
----
Computing the individual jacobians:
∂(F, G)/∂(u, v) =
|∂F/∂u ∂F/∂v|
|∂G/∂u ∂G/∂v| =
|....-1......-1...|
|-3u^2 -3v^2| = 3v^2 - 3u^2.
--
∂(F, G)/∂(x, y) =
|∂F/∂x ∂F/∂y|
|∂G/∂x ∂G/∂y| =
|3x^2 3y^2|
|...2x.....2y..| = 6x^2 y - 6xy^2.
--
So, ∂(x,y)/∂(u, v)
= -(3v^2 - 3u^2)/(6x^2 y - 6xy^2)
= (-v^2 + u^2)/(2x^2 y - 2xy^2).
I hope this helps!
This is simple. This is the determinant value
j = | dx/du dy/dv|
|dx/dv dy/du|
收錄日期: 2021-04-21 15:45:05
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151213193038AAWO7tl
檢視 Wayback Machine 備份