✔ 最佳答案
令 x = 1998
原式
= ( x^3 + 3x^2 + x - 2 ) / ( x^2 + x )
= [ (x+1)(x^2+2x-1) - 1 ] / [ x(x+1) ] ..... 利用綜合除法
= (x^2+2x-1)/x - 1/[ x(x+1) ]
= x+2 - 1/x - [ 1/x - 1/(x+1) ]
= x+2 + 1/(x+1) - 2/x
= x+2 + (x+2)/[ x(x+1) ]
= 2000 + 2000/[ 1998*1999 ]
= 2000 + (1/1998)*(2000/1999)
≒ 2000 + (1/1998)*1
≒ 2000
Ans: (C)