國二數學老師,求救啊!?

2015-12-05 11:03 am
一、因式分解下列各式:
1. (X+Y)(Y+Z)(Z+X)+XYZ=?
2. (a^2-1)(b^2-1)-4ab=?

二、a+b=24,ab=36,則√a/√b+√b/√a=?



(請各題解釋詳細,才有可能採納哦!)

回答 (2)

2015-12-05 11:32 am
✔ 最佳答案

1.
(X+Y)(Y+Z)(Z+X) + XYZ
= [ XZ + Y(X+Y+Z) ](Z+X) + XYZ
= XZ(Z+X) + Y(X+Y+Z)(Z+X) + XYZ
= XZ(X+Y+Z) + Y(X+Y+Z)(Z+X)
= (X+Y+Z)(XY+YZ+ZX) ..... Ans

2.
(a^2-1)(b^2-1) - 4ab
= a^2b^2 - a^2 - b^2 + 1 - 4ab
= ( a^2b^2 - 2ab + 1 ) - ( a^2 + b^2 + 2ab )
= (ab-1)^2 - (a+b)^2
= (ab+a+b-1)(ab-a-b-1) ..... Ans


√a/√b + √b/√a
= (√a*√a + √b*√b ) / ( √a * √b )
= (a+b) / √(ab)
= 24 / √36
= 24 / 6
= 4 ..... Ans
2016-01-04 3:04 pm

1.
(X+Y)(Y+Z)(Z+X) + XYZ
= [ XZ + Y(X+Y+Z) ](Z+X) + XYZ
= XZ(Z+X) + Y(X+Y+Z)(Z+X) + XYZ
= XZ(X+Y+Z) + Y(X+Y+Z)(Z+X)
= (X+Y+Z)(XY+YZ+ZX)

2.
(a^2-1)(b^2-1) - 4ab
= a^2b^2 - a^2 - b^2 + 1 - 4ab
= ( a^2b^2 - 2ab + 1 ) - ( a^2 + b^2 + 2ab )
= (ab-1)^2 - (a+b)^2
= (ab+a+b-1)(ab-a-b-1)


√a/√b + √b/√a
= (√a*√a + √b*√b ) / ( √a * √b )
= (a+b) / √(ab)
= 24 / √36
= 24 / 6
= 4


收錄日期: 2021-04-18 14:10:01
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151205030313AAtXbPy

檢視 Wayback Machine 備份