(1)x³+ax²+bx+c=0有二重根,試證 4(b²-3ac)(a²-3b)=(9c-ab)² (2)x³+ax²+bx+c=0有三重根,試證 a³=27c及a²=3b?

2015-12-03 7:58 am

回答 (2)

2015-12-03 9:11 am
✔ 最佳答案
(1)x^3+ax^2+bx+c=0有二重根,試證
4(b^2-3ac)(a^2-3b)=(9c-ab)^2
Sol
設三根m,m,n,m<>n
2m+n=-a
m^2+2mn=b
m^2n=-c
b^2-3ac
=(m^2+2mn)^2-3(2m+n)(m^2n)
=(m^4+4m^3n+4m^2n^2)-(6m^3n+3m^2n^2)
=m^4-2m^3n+m^2n^2
=m^2(m^2-2mn+n^2)
=m^2(m-n)^2
a^2-3b
=(2m+n)^2-3(m^2+2mn)
=(4m^2+4mn+n^2)-(3m^2+6mn)
=m^2-2mn+n^2
=(m-n)^2
9c-ab
=9(-m^2n)+(2m+n)(m^2+2mn)
=-9m^2n+(2m^3+4m^2n+m^2n+2mn^2)
=2m^3-4m^2n+2mn^2
=2m(m^2-2mn+n^2)
=2m(m-n)^2
So
4(b^2-3ac)(a^2-3b)-(9c-ab)^2
=4m^2(m-n)^2(m-n)^2-[2m(m-n)^2]^2
=0

(2)x^3+ax^2²+bx+c=0有三重根,試證 a^3=27c及a^3=3b?
Sol
設三根m,m,m
3m=-a
3m^2=b
m^3=-c
a^3-27c=(-3m)^3-27(-m^3)=0
a^3=27c
a^2-3b=(-3m)^2-3(3m^2)=0
a^2=3b
2015-12-04 5:34 am
加入你的解答
參考: 你的參考資料是什麼 (非必填)


收錄日期: 2021-04-30 20:14:54
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151202235845AAOCohA

檢視 Wayback Machine 備份