<急>誰會工程數學第二移位定理?

2015-11-29 1:25 pm
求拉式變換

1. f(t)= t-2, 0<=t,16
-1 , t>=16

求反拉式變換

2. e^(-21s)/[s(s^2+16)]

3. e^(-2s)/(s^2+9)

我算出來都跟解答不一樣,誰能給點正確解答~~ 感謝!

回答 (1)

2015-12-01 9:34 am
✔ 最佳答案
3.£{exp(-2s)/(s^2+9)} = ?

Formula-1: £{exp(-as)/s} = u(t-a)

Formula-2: £{exp(-as)*F(s)} = f(t-a)*u(t-a)}


£{F(s)} = £{1/(s^2+9)} = sin(3t)

=> £{exp(-2s)/(s^2+9)} = sin[3(t-2)]*u(t-2) = sin(3t-6)*u(t-2)




2.£{exp(-21s)/[s(s^2+16)]}

= £{exp(-21s)[1/s - 1/(s^2+16)]/16}

= £{exp(-21s) * 1/16s} - £{exp(-21s) * 1/(s^2+16)/16}

= u(t-21)/16 - sin[4(t-21)]*u(t-21)/16

= [1 - sin(4t-84)]*u(t-21)/16





1.f(t) = t-2, 0 <= t <16; f(t) = -1, t>=16

w = F(s)

= ∫(0~16)(t-2)exp(-st)dt + ∫(16~oo)exp(-st)dt

=-∫(0~16)t*d[e^(-st)]/s+2∫(0~16)d[e^(-st)]/s-∫(16~oo)d[e^(-st)]/s

= -A + B - C


A = t*e^(-st) - ∫e^(-st)dt

= t*e^(-st) + e^(-st)/s ;;; t = 0~16

= 16*e^(-16s) + e^(-16s)/s - 1/s


B = 2*e^(-st)/s ;;; t = 0~16

= 2*e^(-16s)/s - 2/s


C = e^(-st)/s ;;; t = 16~oo

= -e^(-16s)/s



w = -16*e^(-16s) - e^(-16s)/s + 1/s + 2*e^(-16s)/s - 2/s + e^(-16s)/s

= -16*e^(-16s) + 2*e^(-16s)/s - 1/s


收錄日期: 2021-04-30 20:18:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151129052514AA5w9L5

檢視 Wayback Machine 備份