✔ 最佳答案
3.£{exp(-2s)/(s^2+9)} = ?
Formula-1: £{exp(-as)/s} = u(t-a)
Formula-2: £{exp(-as)*F(s)} = f(t-a)*u(t-a)}
£{F(s)} = £{1/(s^2+9)} = sin(3t)
=> £{exp(-2s)/(s^2+9)} = sin[3(t-2)]*u(t-2) = sin(3t-6)*u(t-2)
2.£{exp(-21s)/[s(s^2+16)]}
= £{exp(-21s)[1/s - 1/(s^2+16)]/16}
= £{exp(-21s) * 1/16s} - £{exp(-21s) * 1/(s^2+16)/16}
= u(t-21)/16 - sin[4(t-21)]*u(t-21)/16
= [1 - sin(4t-84)]*u(t-21)/16
1.f(t) = t-2, 0 <= t <16; f(t) = -1, t>=16
w = F(s)
= ∫(0~16)(t-2)exp(-st)dt + ∫(16~oo)exp(-st)dt
=-∫(0~16)t*d[e^(-st)]/s+2∫(0~16)d[e^(-st)]/s-∫(16~oo)d[e^(-st)]/s
= -A + B - C
A = t*e^(-st) - ∫e^(-st)dt
= t*e^(-st) + e^(-st)/s ;;; t = 0~16
= 16*e^(-16s) + e^(-16s)/s - 1/s
B = 2*e^(-st)/s ;;; t = 0~16
= 2*e^(-16s)/s - 2/s
C = e^(-st)/s ;;; t = 16~oo
= -e^(-16s)/s
w = -16*e^(-16s) - e^(-16s)/s + 1/s + 2*e^(-16s)/s - 2/s + e^(-16s)/s
= -16*e^(-16s) + 2*e^(-16s)/s - 1/s