Find cos(a+b) if sin(a)= -8/17 where a is in the fourth quadrant and tan(b)= -20/21 where b is in the second quadrant.?
A) -155/493
B) 468/493
C) -475/493
回答 (1)
sina = -8/17
cos²a = 1 - (-8/17)² = 225/289
cosa = 15/17 for a is in the Ⅳ quadrant.
tanb = -20/21
(sin²b) / cos²b = (-20/21)²
(sin²b) / (1 - sin²b) = 400/441
400 - 400sin²b = 441sin²b
sin²b = 400/841
sinb = 20/29 for b is in the Ⅱ quadrant.
cos²b = 1 - 400/841
cosb = -21/29 for b is in the Ⅱquadrant.
cos(a+b) = cosa cosb - sina sinb = (15/17)(-21/29) - (-8/17)(20/29) = -155/493. ANSWER : A)
收錄日期: 2021-04-24 23:38:34
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151128085650AAho2nH
檢視 Wayback Machine 備份