Integrate the given function over the surface.
G(x,y,z)=z on S;{(x,y,z)│y^2+z^2=4,1<x<4}?
回答 (1)
Trasfer it into standard form: G(x,y,z) = x
S: x^2 + y^2 = 4
z = 1~4
Set z = h(x,y)
=> G(x,y,z) = h(x,y) - z
=> ∂G/∂x = ∂h/∂x - ∂z/∂x
=> ∂G/∂x = ∂h/∂x - 0 = ∂h/∂x
=> ∂G/∂y = ∂h/∂y
dS = √[1+(∂h/∂x)^2+(∂h/∂y)^2]*dxdy
= √[1+(∂G/∂x)^2+(∂G/∂y)^2]*dxdy
= √(1+1+0)*dxdy
= √2*dxdy
∫∫G(x,y,z)dS
= ∫∫√2*x*dy*dx
= ∫√2xydx
= ∫√2x√(4-x^2)dx
= -∫√2/2 * √(4-x^2) * d(4-x^2)
= -√2/2 * 2/3 * (4-x^2)^1.5 ;;; x = 0~2
= - √2/3 * [(4-4)^1.5 - (4-0)^1.5]
= √2/3 * 2^3
= 8√2/3
= Answer
收錄日期: 2021-05-01 15:37:35
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151117063859AAVOJ5z
檢視 Wayback Machine 備份