請問這題微積分如何解?

2015-11-12 2:53 am
When the price of a certain commodity is a p dollars per unit,the manufacturer is willing to supply x thousand units,where x-2x (p^1/2)-p^2=31.How fast is the supply changing when the price is $9 per unit and is increasing at the rate of 20 cents per week?

回答 (1)

2015-11-12 10:47 am
✔ 最佳答案
When the price of a certain commodity is a p dollars per unit, the

manufacturer is willing to supply x thousand units, where
x - 2x√p - p^2 = 31. How fast is the supply changing when p = $9/unit

and is increasing at the rate of dp/dt = 0.20 $/week ?


x = (p^2 + 31) / (1 - 2√p)

dx/dt = dx/dp * dp/dt

= [(1-2√p)2p + (p^2+31)(1/√p)]/(1-2√p)^2 * 0.20

= 0.20*(2p - 4p√p + p√p + 31/√p)/(1-2√p)^2

= 0.20*(2*9 - 36*3 + 9*3 + 31/3)/(1-2*3)^2

= [(18 - 108 + 27)3 + 31]0.20/25*3

= - 158*0.04/15

= -6.32/15

= -0.4213*1000 units/week

= -421.3 units/week


收錄日期: 2021-05-01 15:24:45
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151111185351AAm4Q2j

檢視 Wayback Machine 備份