y=(x+1/x^2)^√ 7的微分?

2015-11-11 7:58 am

回答 (1)

2015-11-11 9:27 am
y = (x + 1/x^2)^√7

y' = √7*(x + 1/x^2)^(√7-1)*(x + 1/x^2)'

= √7*(x + 1/x^2)^(√7-1)*(1 - 2/x^3)

= √7*[(x^3 + 1)/x^2]^(√7-1)*(x^3 - 2)/x^3

= √7*(x^3 + 1)^(√7-1)*(x^3 - 2)/x^(2√7-2+3)

= √7*(x^3 - 2)*(x^3 + 1)^(√7-1)/x^(2√7+1)


收錄日期: 2021-04-30 19:58:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151110235857AAUnvG7

檢視 Wayback Machine 備份