✔ 最佳答案
已知x^(1/3)+y^(1/3)+z^(1/3)=0 求(x+y+z)^3-27xyz的值?
Sol
Set a=x^(1/3),b=y^(1/3),c=z^(1/3)
a+b+c=0
c=-a-b
c^3=-a^3-3a^2b-3ab^2-b^3
a^3+b^3+c^3
=a^3+b^3-a^3-3a^2b-3ab^2-b^3
=-3a^2b-3ab^2
A=(x+y+z)^3-27xyz
=(a^3+b^3+c^3)^3-27a^3b^3c^3
=(-3a^2b-3ab^2)^3-27a^3b^3c^3
A/(27a^3b^3)
=-(a+b)^3-c^3
=-(a+b)^3+(a+b)^3
=0
(x+y+z)^3-27xyz=0