求微分方程式
(2x^2+3y^2 -7) x dx -(3x^2+2y^2 -8 ) y dy=0
請問一下該如呵計算?
回答 (2)
0 = (2x^2+3y^2-7) x dx - (3x^2+2y^2-8) y dy
= (2x^2+3y^2-7)d(x^2) - (3x^2+2y^2-8)d(y^2)
2x^2 + 3y^2 = 7
3x^2 + 2y^2 = 8
=> x^2 = 2, y^2 = 1
=> x2 = u + 2, y^2 = v + 1
=> v = ut, t = v/u
=> dv = udt + tdu
0 = (2u + 3v)du - (3u+2v)dv
= (2u + 3ut)du - (3u + 2ut)(udt + tdu)
= (2 + 3t)du - (3 + 2t)(udt + tdu)
= 2(1-t^2)du - (3-2t)du
= 2du/u + (2t - 3)dt/(1-t^2)
ln(c) = ∫2du/u + ∫dt/2(t-1) - ∫5dt/2(t+1)
= ln{u^2/(t+1)^2*√[(t-1)/(t+1)]}
c = u^2/(v/u + 1)^2*√[(v/u - 1)/(v/u + 1)]
= u^4/(u+v)^2*√[(v-u)/(v+u)]
= (x^2-2)^4/(x^2+y^2-3)^2 * √[(y^2-x^2+1)/(x^2+y^2-3)]
= Answer
收錄日期: 2021-04-18 14:00:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151108024425AAQL6iA
檢視 Wayback Machine 備份