Give an equation of the curve which having the points (1,3), (2,5) and (3,11)?

2015-11-05 11:09 pm
更新1:

請幫忙!

更新2:

Thx! 這是exponential equation. Standard form 是y=ab^x, 但我無法計出答案.請幫忙!

更新3:

這題目是在Exponential equation 練習中找到,答案是y=3^(x-1)+2。請問可否解釋怎樣計出的?

更新4:

(1/3)*3^x+2 = 3^(x-1)+2 y=(1/3)*3^x+2 是對的 thx

回答 (2)

2015-11-06 1:35 am
✔ 最佳答案
Give an equation Standard form is y=a*b^x+c of the curve which having the points (1,3)
, (2,5) and (3,11)?
Sol
y=a*b^x+c
3=a*b^1+c
5=a*b^2+c
11=a*b^3+c
(a*b^2+c)-(a*b^1+c)=5-3
a*(b^2-b)=2
(a*b^3+c)-(a*b^1+c)=11-3
a*(b^3-b)=8
(b^3-b)/(b^2-b)=8/2
b^3-b=4b^2-4b
b^3-4b^2+3b=0
b(b^2-4b+3)=0
b(b-1)(b-3)=0
b=0 or b=1 or b=3
(1) b=0
y=c(不合)
(2) b=1
y=a+c(不合)
(3) b=3
a*(27-3)=8
a=1/3
c=3-a*b=2
y=(1/3)*3^x+2

or
題目改為
二次曲線y=ax^2+bx+c通過(1,3) (2,5) and (3,11),求此二次曲線
Sol
y=a(x-1)(x-2)+p(x-1)+3
y(2)=p*(2-1)+3=5
p=2
y=a(x-1)(x-2)+2x+1
y(3)=a*2*1+6+1=11
a=2
y=2(x-1)(x-2)+2x+1
=2(x^2-3x+2)+2x+1
=2x^2-4x+5
2015-11-05 11:29 pm
y(x) = a*x^2 + b*x + c


y(1) = a + b + c = 3

y(2) = 4a + 2b + c = 5

y(3) = 9a + 3b + c = 11



y(2) - y(1) = 3a + b = 2

y(3) - y(2) = 5a + b = 6


Subtract: a = 2

=> b = 2 - 6 = -4

=> c = 3 + 4 - 2 = 5

=> y(x) = 2x^2 - 4x + 5 = Answer


收錄日期: 2021-04-18 14:00:11
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151105150955AAnC3Bz

檢視 Wayback Machine 備份