Algebra 2 help needed?

2015-10-28 7:02 pm
Solve for y : log7 (50 - 4y) - log7 (18 - y) = log7 2
Please help
Thanks

回答 (2)

2015-10-28 7:07 pm
✔ 最佳答案
Log[7](50 - 4y) - Log[7](18 - y) = Log[7](2) → recall: Log[a](x) = Ln(x)/Ln(a) where a is the base

[Ln(50 - 4y) / Ln(7)] - [Ln(18 - y) / Ln(7)] = [Ln(2) / Ln(7)] → you can simplify by Ln(7)

Ln(50 - 4y) - Ln(18 - y) = Ln(2) → you know that: Ln(a) - Ln(b) = Ln(a/b)

Ln[(50 - 4y)/(18 - y)] = Ln(2)

(50 - 4y)/(18 - y) = 2

50 - 4y = 2.(18 - y)

50 - 4y = 36 - 2y

- 4y + 2y = 36 - 50

- 2y = - 14

y = 7
2015-10-28 7:07 pm
With all logs in the same base:
log(50 - 4y) - log(18 - y) = log(2)
Assuming we're dealing with real numbers only:
(50 - 4y) / (18 - y) = 2
50 - 4y = 2(18 - y)
50 - 4y = 36 - 2y
-4y + 2y = 36 - 50
-2y = -14
y = (-14)/(-2)
y = 7


收錄日期: 2021-04-21 14:46:28
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151028110246AAemAFX

檢視 Wayback Machine 備份