Differentiation?

2015-10-26 1:28 pm
find the value of m for which line y=mx is tangent to the graph of y=x^3+2x^2-8

回答 (2)

2015-10-26 1:42 pm
✔ 最佳答案
Sol
設切點(a,b)
b=a^3+2a^2-8
y=x^3+2x^2-8
y’=3x^2+4x
m=3a^2+4a
y-b=m(x-a)
y-b=(3a^2+4a)(x-a)
y=(3a^2+4a)x+(b-3a^3-4a^2)
=(3a^2+4a)x+(a^3+2a^2-8-3a^3-4a^2)
=(3a^2+4a)x+(-2a^3-2a^2-8)
So
2a^3+2a^2+8=0
a^3+a^2+4=0
(a^2-a+2)(a+2)=0
(-1)^2-4*1*2=-7<0
a+2=0
a=-2
m=3*4+4*(-2)=4
2015-10-26 2:31 pm
For graph y=x^3+2x^2-8 : slope, y'=3x^2 + 4x

For line y=mx: slope=m

When line y=mx is tangent to graph y=x^3+2x^2-8 :
i) slope of graph at tangent point = m
=> 3x^2 + 4x = m
=> 3x^2 + 4x - m = 0

ii) line touches graph at only 1 point
=> 3x^2 + 4x - m = 0 has only 1 solution
=> discriminant = 0 *
=> 4^2 - 4(3)(-m) = 0
=> 4(4+3m) = 0
=> 4+3m = 0
=> 3m = -4
=> m = -4/3

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

* For any quadratic eqt. ax^2 + bx - c = o,
x =[ -b ± √(b^2 - 4ac)] /2a , where discriminant = b^2 - 4ac


收錄日期: 2021-04-30 20:13:35
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151026052820AAeTRJA

檢視 Wayback Machine 備份