13若將等差數列a1
https://www.flickr.com/photos/101292575@N06/21846684444/in/dateposted-public/?
回答 (2)
設原數列為:a, a+d, a+2d, ..., a+29d
則新數列是:2a-5, 2a+2d-5, 2a+4d-5, ..., 2a+58d-5
原數列的項差是 d,總和是 (30/2)(a + a+29d),即 15(2a + 29d)
新數列的項差是 2d,總和是
(30/2)(2a-5 + 2a+58d-5)
= 15(4a + 58d - 10)
= 30(2a + 29d) - 150
所以答案是 (B):新數列的總和比原數列總和的2倍少150。
11. An = a1 + (n-1)d
a100 = a1 + 99d
a99 = a1 + 98d
a98 = a1 + 97d
a2 = a1 + d
a3 = a1 + 2d
a100 + a99 + a98 - a1 - a2 - a3
= 3a1 + (99 + 98 + 97 - 1 - 2)d - 3a1
= (97*3 + 3 - 3)d
= 97*3*d
= 873
d = 873/97*3
= 873/291
= 3
a84 - a24
= 83d - 23d
= 60d
= 180
= (D)
12. An = a1 + (n-1)d
=> an = 1 + (n-1)*3; bn = 2 + (n-1)*4
=> an = bn
=> 3*(n-1) = 1 + 4*(n-1)
=> 3*n - 3 = 4*n - 3
=> 3n = 4n
=> d = [3,4] = 12
c10 = 10 + 9d
= 10 + 9*12
= 118
= (D)
13. Sn = Σan = n*a1 + n(n-1)d/2
Tn = Σ(2*an - 5)
= 2Σan - 5Σ1
= 2*Sn - 5*n
T30 = 2*S30 - 5*30
= 2*S30 - 150
= (B)
收錄日期: 2021-04-30 20:14:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151025114720AAopV3b
檢視 Wayback Machine 備份