請問(1)最低次多項式f(x)除以x+1,x-2的餘式均為3,除以2x-1餘式為33/8,f(1)=-1,則f(0)?(2)a,b為x^2-5x+3=0的兩根,整係數多項式f(x)被x-a除之餘b,被x-b除之餘a,被x-5除之餘6,f(x)除以(x^2-5x+3)(x-5)餘式?

2015-10-22 6:16 pm

回答 (1)

2015-10-22 11:49 pm
✔ 最佳答案
Sol
(1)
f(x)=q(x)(x+1)(x-2)(2x-1)(x-1)+a(x+1)(x-2)(2x-1)+b(x+1)(x-2)
+c(x+1)+3
f(2)=3c+3=3
c=0
f(x)=q(x)(x+1)(x-2)(2x-1)(x-1)+a(x+1)(x-2)(2x-1)+b(x+1)(x-2)+3
f(1/2)=b*(3/2)*(-3/2)+3=33/8
-9b/4=9/8
b=-1/2
f(x)=q(x)(x+1)(x-2)(2x-1)(x-1)+a(x+1)(x-2)(2x-1)-(x+1)(x-2)/2+3
f(1)=a*2*(-1)*1-2*(-1)/2+3=-1
-2a=-5
a=5/2
f(x)=q(x)(x+1)(x-2)(2x-1)(x-1)+5(x+1)(x-2)(2x-1)/2-(x+1)(x-2)/2+3
最低次多項式
f(x)=5(x+1)(x-2)(2x-1)/2-(x+1)(x-2)/2+3
(2)
a+b=5,ab=3
f(x)=q(x)(x^2-5x+3)(x-5)+m(x^2-5x+3)+n(x-a)+b
f(b)=n(b-a)+b=a
n=-1
f(x)=q(x)(x^2-5x+3)(x-5)+m(x^2-5x+3)-x+a+b
f(x)=q(x)(x^2-5x+3)(x-5)+m(x^2-5x+3)-x+5
f(5)=m*3-5+5=6
m=2
2(x^2-5x+3)-x+5=2x^2-11x+11


收錄日期: 2021-04-30 20:02:56
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151022101633AAjIpUw

檢視 Wayback Machine 備份