✔ 最佳答案
設 (1+x) / ((x+3) (x-1)) = a/(x+3) + b/(x-1) = (a(x-1) + b(x+3)) / ((x+3) (x-1)) = ((a+b)x + 3b-a) / ((x+3) (x-1))
比較分子係數得 a+b = 1 及 3b-a = 1 , 解得 a = b = 1/2.
ʃ (1+x) / ((x+3) (x-1)) dx
= ʃ ( 1/2 /(x+3) + 1/2 / (x-1) ) dx
= 1/2 ʃ 1/(x+3) d(x+3) + 1/2 ʃ 1/(x-1) d(x-1)
= 1/2 In|x+3| + 1/2 In|x-1| + C