Math. Induction?
Prove by M. I. that
1 - 1/2 + 1/3 - 1/4 + ......+ 1/(2n + 1) - 1/(2n + 2) = 1/(n + 2) + 1/(n + 3) + ..... + 1/(2n + 2)
回答 (1)
Prove by M. I. that
1-1/2+1/3-1/4+ ......+1/(2n+1)-1/(2n + 2)=1/(n + 2)+1/(n + 3)+ ..... +1/(2n + 2)
Sol
當n=1時
左=1/1-1/2+1/3-1/4=(12-6+4-3)/12=7/12
右=1/3+1/4=7/12
左=右
n=1時為真……………………….
設 n=k時為真即
1-1/2+1/3-1/4+ ......+1/(2k+1)-1/(2k + 2)=1/(k + 2)+1/(k + 3)+ ..... +1/(2k + 2)
[1-1/2+1/3-1/4+ ......+1/(2k+1)-1/(2k + 2)]-1/(2k+2+2)
=[1/(k + 2)+1/(k + 3)+ ..... +1/(2k + 2)]-1/(2k+4)
=[1/(k + 3)+ ..... +1/(2k + 2)]+1/(k+2)-1/(2k+4)
=[1/(k + 3)+ ..... +1/(2k + 2)]+2/(2k+4)-1/(2k+4)
=[1/(k + 3)+ ..... +1/(2k + 2)]+1/(2k+4)
=1/(k + 3)+ ..... +1/(2k + 2)+1/(2k+4)
=1/[(k+1)+2)+ ..... +1/[2(k+1)+1/[2(k+1)+2]
So
n=k+1時為真
收錄日期: 2021-04-18 13:57:13
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151020024346AAkL4we
檢視 Wayback Machine 備份