✔ 最佳答案
拋體運動的軌跡方程式之一般式為:
y = bx - cx^2
代入終端點 ( x , y ) = ( R , 0 ) 得:
0 = bR - cR^2 = R( b - cR )
因為 R ≠ 0 , 所以 b = cR
y = cRx - cx^2
代入最高點 ( x , y ) = ( R/2 , H ) 得:
H = cR(R/2) - c(R/2)^2
4H = 2cR^2 - cR^2 = cR^2
c = 4H / R^2
y = (4H/R)x - (4H / R^2)x^2
當 y = H/2
H/2 = (4H/R)x - (4H / R^2)x^2
等式左右皆乘以 2R^2/H 得:
R^2 = 8Rx - 8x^2
8x^2 - 8Rx + R^2 = 0
x
= [ 8R ± √( 64R^2 - 32R^2) ] / 16
= R/2 ± 4√2R/16
= R/2 ± √2R/4
兩點距離
= ( R/2 + √2R/4 ) - ( R/2 - √2R/4 )
= √2 R / 2 ..... Ans
答案B應該是漏掉了一個根號, 所以應該選B