Given that y = 2x^3 + 5x^2 – 8x -15,?
(a) show that when x = -3, y =0;
(b) hence factorise 2x^3 + 5x^2 – 8x -15; and
(c) find the two other values of x for which y = 0.
回答 (3)
Given that y = 2x^3 + 5x^2 – 8x -15,?
(a) show that when x = -3, y =0;
evaluate f(- 3)...y = 2(- 27) + 5(9) + 24 - 15 = - 54 + 45 + 24 - 15 = 69 - 69 = 0
(x + 3) is a factor
(b) hence factorise 2x^3 + 5x^2 – 8x -15; and
-3]2.....5.....-8.....-15
_____-6____3___15
..2....-1......-5......0
(x + 3)(2x^2 - x - 5)
(c) find the two other values of x for which y = 0.
Use the quadratic formula...
x = [1 ± √41]/4
check...do something !
y=2(-3)^3+5(-3)^2-8(-3)-15
y=-54+45+24-15=0
So (x+3) is a factor....
(2x^3+5x^2-8x-15)/(x+3)
2x^2 rem -x^2-8x-15
-x rem -5x-15
-5 rem 0
(x+3)(2x^2-x-5)
The other two values for x which make y=0 are
x=[1±√41]/4
y = 2x³ + 5x² - 8x - 15
y = 2x³ + (6x² - x²) - (5x + 3x) - 15
y = 2x³ + 6x² - x² - 5x - 3x - 15
y = 2x³ - x² - 5x + 6x² - 3x - 15
y = (2x³ - x² - 5x) + (6x² - 3x - 15)
y = x.(2x² - x - 5) + 3.(2x² - x - 5)
y = (x + 3).(2x² - x - 5) ← you can see that - 3 is a root
When x = - 3 → then: y = 0
The other values of x that make y = 0 are when:
2x² - x - 5 = 0
x² - (1/2).x - (5/2) = 0
x² - (1/2).x + (1/4)² - (1/4)² - (5/2) = 0
x² - (1/2).x + (1/4)² - (1/16) - (40/16) = 0
x² - (1/2).x + (1/4)² = 41/16
[x - (1/4)]² = [± (√41)/4]²
x - (1/4) = ± (√41)/4
x = (1/4) ± [(√41)/4]
x = (1 ± √41)/4
→ x₁ = (1 + √41)/4
→ x₂ = (1 - √41)/4
收錄日期: 2021-05-04 02:48:09
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151016075224AAWLj6C
檢視 Wayback Machine 備份