Find all solutions of the equation in the interval (0, 2π)?

2015-10-12 10:16 pm
Find all solutions of the equation in the interval (0, 2π)

cos^2(x)=2-2sin(x)

Write your answer in radians in terms of π
If there is more than one solution, separate them with commas.

Please help

回答 (3)

2015-10-12 10:21 pm
✔ 最佳答案
cos^2(x) = 1 - sin^2(x)

1 - sin^2(x) = 2 - 2 sin x

sin^2(x) - 2sin(x) + 1 = 0

(sin(x) - 1)^2 = 0

sin(x) - 1 = 0

sin(x) = 1

x = pi/2
2015-10-12 10:20 pm
1-sin^2(x) = 2-2sin(x)
sin^2(x)-2sin(x)+1 = 0
(sinx-1)^2 = 0
sinx = 1
x = pi/2
2015-10-12 10:20 pm
cos(x)^2 = 2 - 2sin(x)
1 - sin(x)^2 = 2 - 2sin(x)
sin(x)^2 - 2sin(x) + 2 - 1 = 0
sin(x)^2 - 2sin(x) + 1 = 0
(sin(x) - 1)^2 = 0
sin(x) - 1 = 0
sin(x) = 1
x = pi/2


收錄日期: 2021-04-21 14:36:30
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151012141643AA4LzEE

檢視 Wayback Machine 備份