x平方-2x-3+(x平方-x-6)根號3=0?

2015-10-09 1:22 pm

回答 (1)

2015-10-09 5:38 pm
x² - 2x - 3 + (x² - x - 6)√3 = 0

(1 + √3)x² - (2 + √3)x - 3(1 + 2√3) = 0

(1 + √3)(1 - √3)x² - (2 + √3)(1 - √3)x - 3(1 + 2√3)(1 - √3) = 0

-2x² - (-1 - √3)x - 3(-5 + √3) = 0

2x² - (1 + √3)x - 3(5 - √3) = 0

(x - 3)[2x + (5 - √3)] = 0

x = 3 或 x = (-5 + √3)/2 ...... (答案)


=====
以上「 YA HOO ! 知識+管理員」的答案可簡化如下:

由於Δ = (2 + √3)² + 12(√3 + 1)(1 + 2√3) = 91 + 40√3 = (4 + 5√3)²

故此 x = [(2 + √3) ± √(91 + 40√3)] / [2(√3 + 1)] 可轉為
x = [(2 + √3) ± (4 + 5√3)] / [2(√3 + 1)]
x = (2 + √3 + 4 + 5√3) / [2(√3 + 1)] 或 x = (2 + √3 - 4 - 5√3) / [2(√3 + 1)]
x = (6 + 6√3) / [2(√3 + 1)] 或 x = (-2 - 4√3)(√3 - 1) / [2(√3 + 1)(√3 - 1)]
x = 6(√3 + 1) / [2(√3 + 1)] 或 x = (-10 + 2√3) / 4
x = 3 或 x = (-5 + √3)/2


收錄日期: 2021-04-18 00:24:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20151009052235AAmJ3cL

檢視 Wayback Machine 備份