✔ 最佳答案
(a)
正弦函數的週期 = 2π
2π = π t / 6
t = 12
(b)
因為 x(t) = (1/2)*sin( π t / 6 )
所以, x 的最大值 = (1/2)*1 = 1/2
因為 x^2 + y^2 = 1^2 , x > 0 , y > 0
所以, 當 x 達到最大, y 則達到最小.
故 y 的最小值 = √(1^2 - x^2) = √[1 - (1/2)^2] = √(3/4) = √3 / 2
(c)
y^2 = 1^2 - x^2
等式兩邊對 t 微分, 等式恆成立:
2y dy/dt = - 2x dx/dt
y dy/dt = - x dx/dt ..... (1)
y = √(1^2 - (1/4)^2) = √(15/16) = √15 / 4
x = (1/2)*sin( π t / 6 ) = 1/4
sin( π t / 6 ) = 1/2
π t / 6 = π / 6
t = 1
dx/dt
= d [ (1/2)*sin( π t / 6 ) ] / dt
= (1/2)(π/6)cos( π t / 6 )
= (π/12)cos( π*1 / 6 )
= (π/12) * √3 / 2
= √3 π / 24
將以上數值代入(1)式:
y dy/dt = - x dx/dt
( √15 / 4 )(dy/dt) = - (1/4)( √3 π / 24 )
dy/dt
= - √3 π / ( 24 * √15 )
= - π / ( 24 * √5 )
= - √5 π / ( 24 * 5 )
= - √5 π / 120
y軸端速率
= ∣ - √5 π / 120 ∣
= √5 π / 120