✔ 最佳答案
f(x)
= (x² - 2x - 1)(x² - 2x + 3) + 4x² - 8x + 9
= (x² - 2x + 1 - 2)(x² - 2x + 1 + 2) + (4x² - 8x + 4) + 5
= [(x² - 2x + 1) - 2] [(x² - 2x + 1) + 2] + 4(x² - 2x + 1) + 5
= [(x - 1)² - 2] [(x - 1)² + 2] + 4(x - 1)² + 5
= {[(x - 1)²]² - 4} + 4(x - 1)² + 5
= [(x - 1)²]² + 4(x - 1)² + 1
由於 (x - 1)² ≥ 0,故此 f(x) = [(x - 1)²]² + 4(x - 1)² + 1 ≥ 1
f(x) 之最小值 = 1 ..... (答案)