高二數學 已知四邊形 ABC中,線段AC=10 線段BD=8, 線段AC與線段BD的一個夾角為60度,求此四邊形面積 請幫忙解,謝謝!?

2015-09-29 5:49 am

回答 (1)

2015-09-29 8:58 am
✔ 最佳答案
設AC與BD交於P , AP = x , BP = y
則 CP = 10-x , DP = 8-y

Case i , ∠BPC = 60°
四邊形面積
= ΔAPB + ΔBPC + ΔCPD + ΔDPA
= xy*sin120° + (10-x)y*sin60° + (10-x)(8-y)*sin120° + x(8-y)*sin60°
= (√ 3 / 2 )( xy + 10y - xy + 80 - 8x - 10y + xy + 8x - xy )
= (√ 3 / 2 ) * 80
= 40√ 3

Case ii , ∠APB = 60°
則計算式與Case i 類似, 只不過sin120°換成sin60°, sin60°換成sin120°,
但因為 sin120° = sin60° , 所以最後結果也是 40√ 3

Ans: 40√ 3


收錄日期: 2021-05-02 14:11:09
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150928214943AAfJ0A1

檢視 Wayback Machine 備份