Imaginary number problem (help fast)?

2015-09-21 2:58 pm
( 1 - i ) ^40

how do i do dis??????????????????????????????/////////////

回答 (1)

2015-09-21 3:24 pm
✔ 最佳答案
Method 1 :
(1 - i)^40
= [(1 - i)^2]^20
= [1^2 - 2i + i^2]^20
= (-2i)^20
= (-2)^20 × (i)^20
= 2^20 × {[(i)^2]^2}^5
= 1048576 × 1
= 1048576 ...... (Ans)


Method 2 :
(1 - i)^40
= {(√2)[(1/√2) - (1/√2)i]}^40
= (√2)^40 × [cos(315°) + i sin(315°)]^40
= (√2)^40 × [cos(315°) + i sin(315°)]^40
= 2^20 × [cos(315° × 40) + i sin(315° × 40)] ...... (By De Moivre's Theorem)
= 1048576 × [cos(12600°) + i sin(12600°)]
= 1048576 × [cos(360° × 35) + i sin(360° × 35)]
= 1048576 × [cos(0°) + i sin(0°)]
= 1048576 × [1 + 0]
= 1048576 ...... (Ans)


收錄日期: 2021-04-18 00:17:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150921065817AAmi1na

檢視 Wayback Machine 備份