設 x, y 為實數, X^2 +4xy+ 5y^2 - 2x + 2y + 10 = 0 求 x, y 值?
回答 (2)
x²+4xy+5y²-2x+2y+10=0
==> x²+4xy+4y²+y²-2x+6y-4y+1+9=0
==> (x²+4xy+4y²-2x-4y+1)+(y²+6y+9)=0
==> (x+2y-1)²+(y+3)²=0
所以
x+2y-1=0 ⋯⋯ ①
y+3=0 ⋯⋯⋯⋯ ②
由 ② 得 y=-3
代入 ① 得 x=7
所以 x=7,y=-3
Sol
∂(x^2+4xy+5y^2-2x+2y+10)/∂x=0
2x+4y-2=0
∂(x^2+4xy+5y^2-2x+2y+10)/∂x=0
4x+10y+2=0
(4x+10y+2)-2(2x+4y-2)=0
2y+6=0
y=-3
x=7
49+4*(-21)+5*9-14-6+10=0
or
(x+2y-1)^2=x^2+4y^2+1+4xy-2x-4y
x^2+4xy+5y^2-2x+2y+10=0
(x+2y-1)^2+(x^2+4xy+5y^2-2x+2y+10-x^2-4y^2-4xy-1+2x+4y)=0
(x+2y-1)^2+(y^2+6y+9)=0
(x-2y-1)^2+(y+3)^2=0
y=-3,x=7
收錄日期: 2021-04-30 20:00:32
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150916060750AA3GTBk
檢視 Wayback Machine 備份