✔ 最佳答案
1.
Since arg = π/2 ,
( z - 2 ) / ( z - 6i ) = 0 + ki , for some real number k
z - 2 = zki + 6k
z ( 1 - ki ) = 6k + 2
z
= ( 6k + 2 ) / ( 1 - ki )
= ( 6k + 2 )( 1 + ki ) / [ ( 1 - ki )( 1 + ki ) ]
= [ ( 6k + 2 ) + k( 6k + 2 )i ] / ( 1 + k^2 )
So,
x = ( 6k + 2 ) / ( 1 + k^2 )
y = k( 6k + 2 ) / ( 1 + k^2 ) = kx
x^2 + y^2 - 2x - 6y
= x^2 + k^2*x^2 - 2x - 6kx
= x [ ( 1 + k^2 )x - ( 2 + 6k ) ]
= x [ ( 6k + 2 ) - ( 2 + 6k )]
= 0
Q.E.D.
2.
z^2 + qz
= 4 + 3i^2 - 4√3i + q( 2 - √3i )
= 1 - 4√3i + 2q - q√3i
= ( 1 + 2q ) - √3( 4 + q )i
tan( - π / 3 ) = y / x
- √3 = -√3( 4 + q ) / ( 1 + 2q )
4 + q = 1 + 2q
q = 3 ... Ans