請問~~~ [(3^4+4)/(5^4+4)] x [(7^4+4)/(9^4+4)] x [(11^4+4)/(13^4+4)] x ...... x [(51^4+4)/(53^4+4)] 化為最簡分數。 謝謝~~~?

2015-09-13 12:05 pm

回答 (1)

2015-09-13 12:51 pm
✔ 最佳答案
Sol
x^4+4
=(x^4+4x^2+4)-4x^2
=(x^2-2x+2)(x^2+2x+2)
=[(x-1)^2+1]*[(x+1)^2+1]
So
[(3^4+4)/(5^4+4)]*[(7^4+4)/(9^4+4)]*[(11^4+4)/(13^4+4)]*…
*[(51^4+4)/(53^4+4)]
=[(3-1)^2+1]*[(3+1)^2+1]/{[5-1)^2+1]*[(5+1)^2+1]}
*[(7-1)^2+1]*[(7+1)^2+1]/{[9-1)^2+1]*[(9+1)^2+1]}
*[(11-1)^2+1]*[(11+1)^2+1]/{[13-1)^2+1]*[(13+1)^2+1]}
…….
*[(47-1)^2+1]*[(47+1)^2+1]/{[(49-1)^2+1]*[(49+1)^2+1]}
*[(51-1)^2+1]*[(51+1)^2+1]/{[(53-1)^2+1]*[(53+1)^2+1]}
=[(3-1)^2+1]/[(53+1)^2+1]}
=5/2917


收錄日期: 2021-04-30 20:03:16
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150913040554AAH1aDe

檢視 Wayback Machine 備份