數學一問come help me?

2015-09-13 10:29 am
let a and b be non-zero real numbers
(a)Is (a-bi)(b-ai)a purely imaginary number?Explain your answer.
(b)let m=(a-bi)(b-ai)and n=(a+bi)(b+ai).
(i)find the value of m/n
(ii)hence,simplify
{[(1-2i)(2-i)i]/[(1+2i)(2+i)]}^3002
用中文解釋thx

回答 (1)

2015-09-13 11:51 am
✔ 最佳答案
(a) (a-bi)(b-ai)=ab -a^2 i -b^2i -ab= -(a^2 + b^2)i ---------- (*)
which is a imaginary no. ∴(a-bi)(b-ai) is a imaginary no.

(b) (i) m/n
=[(a-bi)(b-ai)] / [(a+bi)(b+ai)]
= -(a^2 + b^2)i / [(ab-ab +(a^2 + b^2)i]
= -(a^2 + b^2)i / (a^2 +b^2)i
= -1

(ii) From the result of (b)(i) ,
get [(a-bi)(b-ai)] / [(a+bi)(b+ai)]= -1 ---------- (**)
If let a=1, b=2, then (**) becomes :
[(1-2i)(2-i)i] / [(1+2i)(2+i)] = -1
∴ {[(1-2i)(2-i)i]/[(1+2i)(2+i)]}^3002 = (-1)^3002 = 1

________________________________________________________

Some notes for you :
Q(a): a complex no. 的格式 : x + yi,
where x- real no. (實數), yi - imaginary part(虛數部份)

∴ 如 計到 (a-bi)(b-ai) = ( ??? )i, 則 可說: 這是個 purely imaginary no.

Q(b ii): "hence" 這個字是一個「貼士」:- 即叫你 由(i)部的結果 砌出(ii)部 !
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
有不明白的步驟嗎? 歡迎提出!


收錄日期: 2021-05-01 01:21:12
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150913022943AAdnYVr

檢視 Wayback Machine 備份