求此題代數題的解法(高手請進)!!?

2015-09-11 2:59 pm
a+b+c=10,a^2+b^2+c^2=38,a^3+b^3+c^3=160,求abc=?(如附圖)
答案好像是30,可是我是代數字去算的分別為2、3、5
求如何以乘法公式解題,謝謝!!

回答 (1)

2015-09-11 4:37 pm
✔ 最佳答案
a³ + b³ + c³ - 3abc = (a + b)(a² - ab + b²) + c³ - 3abc
a³ + b³ + c³ - 3abc = (a + b) ( (a + b)² - 3ab ) + c³ - 3abc
a³ + b³ + c³ - 3abc = (a + b)³ + c³ - 3ab(a + b) - 3abc
a³ + b³ + c³ - 3abc = (a + b + c) (a² + 2ab + b² - ac - bc + c²) - 3ab(a + b + c)
a³ + b³ + c³ - 3abc = (a + b + c) (a² + b² + c² - ab - bc - ca)
a³ + b³ + c³ - 3abc = (a + b + c) (3(a² + b² + c²) - a² - b² - c² - 2ab - 2bc - 2ca) / 2
a³ + b³ + c³ - 3abc = (a + b + c) (3(a² + b² + c²) - (a + b + c)²) / 2
160 - 3abc = 10 (3(38) - 10²) / 2
160 - 3abc = 70
abc = 30


收錄日期: 2021-04-21 22:30:58
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150911065929AA5y7pw

檢視 Wayback Machine 備份