✔ 最佳答案
The dimension are (2 in by 3 in by 4 in), so it gives us : 2 * 3 * 4 = 24 in³
Each dimension needs to be increases in size to hold five times as much material.
The new volume is: 5 * 24 = 120 in³
The new dimensions are:
The dimension 2 becomes: (2 + x)
The dimension 3 becomes: (3 + x)
The dimension 4 becomes: (4 + x)
…and the new volume is:
= (2 + x).(3 + x).(4 + x) → recall the new volume: 120
(2 + x).(3 + x).(4 + x) = 120
(6 + 2x + 3x + x²).(4 + x) = 120
(6 + 5x + x²).(4 + x) = 120
24 + 6x + 20x + 5x² + 4x² + x³ = 120
x³ + 9x² + 26x - 96 = 0 → it's necessary to eliminate the term at the power 2
x³ + 9x² + 26x - 96 = 0 → let: x = z - 3
(z - 3)³ + 9.(z - 3)² + 26.(z - 3) - 96 = 0
[(z - 3)².(z - 3)] + 9.(z² - 6z + 9) + 26z - 78 - 96 = 0
[(z² - 6z + 9).(z - 3)] + 9z² - 54z + 81 + 26z - 174 = 0
[z³ - 3z² - 6z² + 18z + 9z - 27] + 9z² - 28z - 93 = 0
[z³ - 9z² + 27z - 27] + 9z² - 28z - 93 = 0
z³ - 9z² + 27z - 27 + 9z² - 28z - 93 = 0
z³ - z - 120 = 0 ← you can see that there is no power 2
z³ - z - 120 = 0 → let: z = (u + v)
(u + v)³ - (u+ v) - 120 = 0
[(u + v)².(u + v)] - (u+ v) - 120 = 0
[(u² + 2uv + v²).(u + v)] - (u+ v) - 120 = 0
[u³ + u²v + 2u²v + 2uv² + uv² + v³] - (u+ v) - 120 = 0
[u³ + v³ + 3u²v + 3uv²] - (u+ v) - 120 = 0
[(u³ + v³) + (3u²v + 3uv²)] - (u+ v) - 120 = 0
[(u³ + v³) + 3uv.(u + v)] - (u+ v) - 120 = 0
(u³ + v³) + 3uv.(u + v) - (u+ v) - 120 = 0 → you can factorize (u + v)
(u³ + v³) + (u + v).(3uv - 1) - 120 = 0 → suppose that: (3uv - 1) = 0 ← equation (1)
(u³ + v³) + (u + v).(0) - 120 = 0
(u³ + v³) - 120 = 0 ← equation (2)
You can get a system with 2 equations:
(1) : (3uv - 1) = 0
(1) : 3uv = 1
(1) : uv = 1/3
(1) : u³v³ = 1/27
(2) : (u³ + v³) - 120 = 0
(2) : u³ + v³ = 120
Let: U = u³
Let: V = v³
You get a new system:
(1) : UV = 1/27 ← this is the product P
(2) : U + V = 120 ← this is the sum S
…and you know that U et V are the solutions of the following equation: x² - Sx + P = 0
x² - 120x + (1/27) = 0
Δ = 120² - [4 * (1/27)]
Δ = 14400 - (4/27)
Δ = (388800/27) - (4/27)
Δ = 388896/27
Δ = (74² * 71) / (3² * 3)
Δ = (74/3)² * (71/3)
x1 = [120 - (74/3).√(71/3)] / 2 = 60 - (37/3).√(71/3) ← this is U
x2 = [120 + (74/3).√(71/3)] / 2 = 60 + (37/3).√(71/3) ← this is V
Recall: u³ = U
u³ = 60 - (37/3).√(71/3)
u = [60 - (37/3).√(71/3)]^(1/3)
Recall: v³ = V
v³ = 60 + (37/3).√(71/3)
v = [60 + (37/3).√(71/3)]^(1/3)
Recall: z = (u + v)
Recall: x = z - 3
x = (u + v) - 3
x = [60 - (37/3).√(71/3)]^(1/3 + [60 + (37/3).√(71/3)]^(1/3) - 3
x = 2 ← this is the increase