✔ 最佳答案
Suppose ∫ 1/ln(x+u) du = F(u) + C
Then dF(u)/du = 1/ln(x+u)
d/dx { ∫ 1/ln(x+u) du , from u=x to u=x^2 }
= d/dx { F(u) , from u=x to u=x^2 }
= d/dx [ F(x^2) - F(x) ]
= dF(x^2)/dx - dF(x)/dx
= [ dF(x^2)/dx^2 ]*( dx^2/dx ) - 1/ln(x+x)
= [ 1/ln(x+x^2) ]*2x - 1/ln(2x)
= 2x/ln(x+x^2) - 1/ln(2x) ... Ans