20已知一等差數列的項數為偶數 https://www.flickr.com/photos/101292575@N06/20906372618/in/dateposted-public/?

2015-09-02 9:19 pm

回答 (2)

2015-09-03 6:21 am
(20) 因為 b(k)=a(n-k+1),所以
a17=b17
==> a17=a(n-17+1)
==> 17=n-17+1
==> n=33
假設此數列為 a, a+d, a+2d, ..., a+(n-1)d
則 a5-b5=6
==> a5-a(33-5+1)=6
==> a5-a29=6
==> (a+4d)-(a+28d)=6
==> -24d=6
==> d=-1/4
又 a17=17
==> a+16d=17
==> a-4=17
==> a=21
所以 a(n)
=a33
=a+32d
=21+32(-1/4)
=13 (答案:(A))
2015-09-03 8:36 am
18.
設首項為 a,公差為 d。
設項數為 2n(因項數為偶數)。

末項 = T(2n) = a + (2n - 1)d

末項比首項大16.5:
[a + (2n - 1)d] - a = 16.5
(2n - 1)d = 16.5 ...... [1]

偶數項之和 - 奇數項之和 = 72 - 63
[T(2) + T(4) + T(6) + ... + T(2n)] - [T(1) + T(3) + T(5) + ... + T(2n - 1)] = 9
[T(2) - T(1)] + [T(4) - T(3)] + [T(6) - T(5)] + ... + [T(2n) - T(2n - 1)] = 9
d + d + d + ... + d = 9
nd = 9 ...... [2]

[1]/[2] :
(2n - 1)/n = 16.5/9
9(2n - 1) = 16.5n
18n - 9 = 16.5n
1.5n = 9
n = 6

項數 = 2n = 12 ...... 答案選(B)


收錄日期: 2021-04-18 00:09:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150902131922AA6o7bb

檢視 Wayback Machine 備份