verify the giving factors of the function then write the complete factorization of the polynomial?
f(x)=x^3+4x^2-25x-28 factor: (x-4)
回答 (3)
f(x) = x³ + 4x² - 25x - 28
f(4) = (4)³ + 4(4)² - 25(4) - 28 = 0
Hence, (x - 4) is a factor of f(x).
f(x)
= x³ + 4x² - 25x - 28
= x³ - 4x² + 8x² - 32x + 7x - 28
= (x³ - 4x²) + (8x² - 32x) + (7x - 28)
= x²(x - 4) + 8x(x - 4) + 7(x - 4)
= (x - 4)(x² + 8x + 7)
= (x - 4)(x + 1)(x + 7)
f (4) = 64 + 64 - 100 - 28 = 0
Thus x - 4 is a factor
f(4) = 0
f(x) = (x-4)(x+1)(x+7)
收錄日期: 2021-05-01 15:21:30
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150831210227AAxQtRq
檢視 Wayback Machine 備份