1+1=咩????????

2015-08-30 12:54 pm

回答 (51)

2015-09-02 1:19 am
✔ 最佳答案
不是一般的人能答出來的! 科學家到現在才說出來,很複雜的! 1+1為什麼等於2?這個問題看似簡單卻又奇妙無比。 在現代的精密科學中,特別在數學和數理邏輯中,廣泛地運用著公理法。什麼叫公理法呢?從某一科學的許多原理中,分出一部分最基本的概念和命題,對這些基本概念不下定義,而這一學科的所有其它概念都必須直接或間接由它們下定義;對這些基本命題(也叫公理)也不給予論證,而這一學科中的所有其它命題卻必須直接或間接由它們中推出。這樣構成的理論體系就叫公理體系,構成這種公理體系的方法就叫公理法。 1+1=2就是數學當中的公理,在數學中是不需要證明的。又因為1+1=2是一切數學定理的基礎,所以它也是無法用數學的方法證明的。 至於“1+1為什麼等於2?”作為一個問題,沒要求大家必須用數學的方法證明,其實只要說明為什麼1+1=2就可以了,可以說這是定義,也可以說這是公理。不過用反證法還是可以證明的:假設1+1不等於2,則數學就是一鍋粥,凡是用到數學的地方都是一鍋粥,人類社會就亂了套了,所以1+1必須等於2。 1+1=2看似簡單,卻對於人類認識世界有非同尋常的意義。 人類認識世界的過程就像一個小孩滾雪球的過程:第一步,小孩先要用雙手捧一捧雪,這一捧雪就相當於人類對世界的感性認識。第二步,小孩把手裡的雪捏緊,成為一個小雪球,這個小雪球就相當於人類對感性認識進行加工,形成了概念。於是就有了1。第三步,小孩把雪球放在地上,發現雪球可以粘地上的雪,這就相當於人類的理性認識。雪可以粘雪,相當於1+1=2。第四步,小孩把粘了雪的雪球在雪地上滾一下,發現雪球粘雪後越來越大,這就相當於人類認識世界的高級階段,可以進入良性迴圈了。相當於2+1=3。1,2,3可以排成一個最簡單的數列,但是可以演繹至無窮。 有了1只是有了概念,有了1+1=2才有了數學,有了2+1=3才開始了數學的無窮變化。 物理學與1+1=2的關係 人類認識世界的過程是一個由感性到理性,有已知到未知的過程。 在數學當中已知1、2、3,則可以至於無窮,什麼是物理學當中的1、2、3呢?我認為:品質、長度、時間等基本物理概念相當於1,它們是組成物理學宏偉大廈的磚和瓦;牛頓運動定律相當於2,它使我們有了真正的物理學和科學的物理分析方法;力學的相對性原理相當於3,使牛頓運動定律可以廣泛應用。在經典物理學中一切都是確定無疑的,有了已知條件,我們就可以推出未知。 等到相對論的出現,一切都變了。現在相對論已經深入人心,即便是那些反對相對論的人,也基本上是認可相對論的結論的,什麼時間可變、長度可變、品質可變、時空彎曲……經典物理學認為光速對於不同的觀測者是不同的(雖然牛頓是個唯心主義者)。相對論則認為光速對於不同的觀測者是不變的(雖然我們是唯物主義者)。我們丟掉了經典物理學所有不變的東西,換來的是相對論唯一不變的東西----光速。我覺得就像是用許多西瓜換來了一個芝麻一樣,而且這個芝麻是很抽象的,它在真空中,速度最快,讓你根本捉不到、摸不到。 我認為牛頓三條運動定律是真理,是完美的,是不容置疑的。質疑牛頓運動定律的人開口閉口說不存在絕對靜止的物體,也不存在絕對不受外力的物體,卻忘了上學時用的物理教材,開頭都有緒論,緒論中都說:一切物質都在永恆不息地運動著,自然界一切現象就是物質運動的表現。運動是物質的存在形式、物質的固有屬性……還提到:抽象方法是根據問題的內容和性質,抓住主要因素,撇開次要的、局部的和偶然的因素,建立一個與實際情況差距不大的理想模型來研究。例如,“質點”和“剛體”都是物體的理想模型。把物體看作質點時,品質和點是主要因素,物體的形狀和大小時可以忽略不計的次要因素。把物體看作剛體——形狀和大小保持不變的物體時,物體的形狀、大小和品質分佈時主要因素,物體的變形是可以忽略不計的次要因素。在物理學研究中,這種理想模型是十分必要的。研究機械運動的規律時,就是從質點運動的規律入手,再研究剛體運動的規律而逐步深入的。有人在故意混淆視聽,有人在人云亦云,但聽的人自己要想一想,牛頓用抽象的方法來分析問題,是符合馬克思主義分析問題抓主要矛盾的指導思想的,否定了牛頓運動定律,我們拿什麼來分析相對靜止狀態、勻速直線運動、自由落體運動……? 看來相對論不但搞亂了我們的基本概念,還搞亂了我們的分析方法,這才是最危險的,長此以往,物理學將不再是物理學,而是一鍋粥,一鍋發黴的粥! 我認為物理學發展的正確思路是先要從品質、長度、時間、能量、速度等基本物理概念的理解上著手,在物理學界開展一場正名運動,然後討論牛頓運動定律是否錯了,錯的話錯在哪裡,最後相對論的對錯也就不言自明瞭,也容易接受了。
1+1=2是數量上相加時的結果.若數位在不指明具體指什麼或單位不統一的情況下,1+1才可以等於3.
2015-11-03 11:35 am
2
2015-09-05 11:07 am
2
2015-09-04 10:56 am
2
2015-09-03 3:46 pm
2
2015-09-03 8:55 am
2
2016-04-23 6:59 am
2
2015-10-02 1:01 pm
2
2015-10-01 2:07 pm
2
2015-09-04 12:06 pm
2


收錄日期: 2021-04-11 21:11:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150830045403AAbvsni

檢視 Wayback Machine 備份