✔ 最佳答案
1(2n-1) + 3(2n-3) + ... + (2n-3)3 + (2n-1)1
= 1(2n-1) + 3(2n-3) + ... + (2n-3)(2n - (2n-3)) + (2n-1)(2n - (2n-1))
= (1 + 3 + ... + 2n-3 + 2n-1) 2n - (1² + 3² + ... + (2n-3)² + (2n-1)²)
= (1 + 2n-1)(n/2) 2n - (1² + 2² + 3² + ... + (2n-3)² + (2n-2)² + (2n-1)²) + (2² + 4² + 6² + ... + (2n-4)² + (2n-2)²)
= (1 + 2n-1)(n/2) 2n - (1² + 2² + 3² + ... + (2n-3)² + (2n-2)² + (2n-1)²) + 4(1² + 2² + 3² + ... + (n-2)² + (n-1)²)
= (1 + 2n-1)(n/2) 2n - (2n-1)(2n-1 + 1)(2(2n-1) + 1)/6 + 4(n-1)(n-1 + 1)(2(n-1) + 1)/6
= 2n³ - (2n-1)(2n)(4n-1)/6 + 4(n-1)(n)(2n-1)/6
= 2n(n² - (2n-1)(4n-1)/6 + (n-1)(2n-1)/3)
= ⅓ n(6n² - (2n-1)(4n-1) + 2(n-1)(2n-1))
= ⅓ n(6n² - (8n² - 6n + 1) + (4n² - 6n + 2))
= ⅓ n(2n² + 1)