三角恆等式倒數關係(求數學大師來幫幫忙!)?

2015-08-25 6:11 pm
sinθ的倒數為cscθ=>sinθ*cscθ=1
cosθ的倒數為secθ=>cosθ*secθ=1
tanθ的倒數為cotθ=>tanθ*cotθ=1
(↑要怎麼看?)
-----------------------------------------------------
例1.
sin²25°-cot²55°+csc²55-sec²65°+tan²65°+cos²25°= ?
例2.
cosθ 1-sinθ
------- + --------- = ?
1+sinθ cosθ
例3.
化簡tan²θ+(1-tan⁴θ)cos²θ= ?
例4.
0<θ<90°﹐已知sinθ*cosθ=3/8,則sinθ+cosθ= ?
例5.
設sinθ+cosθ=7/5,則(1)sinθ*cosθ= ?
(2)tanθ*cotθ= ? (3)sin³θ+cos³θ= ?
例6.
1 1 1 1
--------- + ---------- + ----------- + ---------------
1+sin²θ 1+cos²θ 1+sec²θ 1+csc²θ
= ?
這些題目希望能簡單一點的解說一下!太複雜我會看不懂...非常感謝!

回答 (1)

2015-08-26 2:10 am
✔ 最佳答案
cscθ=1/sinθ;secθ=1/cosθ;cotθ=1/tanθ

所以
sin²25°-cot²55°+csc²55-sec²65°+tan²65°+cos²25°
=sin²25°-1/tan²55°+1/sin²55-1/cos²65°+tan²65°+cos²25°
=sin²25°+cos²55°-cos²55/sin²55°+1/sin²55°-1/cos²65°+sin²65°/cos²65°
=1+(1-cos²55)/sin²55°-(1-sin²65°)/cos²65°
=1+1-1
=1

cosθ/(1+sinθ)+(1-sinθ)/cosθ
=[cos²θ+(1+sinθ)(1-sinθ)]/[cosθ(1+sinθ)]
=(cos²θ+1-sin²θ)/[cosθ(1+sinθ)]
=2cos²θ/[cosθ(1+sinθ)]
=2cosθ/(1+sinθ)

tan²θ+(1-tan⁴θ)cos²θ
=tan²θ+(1+tan²θ)(1-tan²θt)cos²θ
=tan²θ+sec²θ(1-tan²θ)cos²θ
=tan²θ+1-tan²θ
=1

sinθ cosθ=3/8
==> 2sinθ cosθ=3/4
==> sin²θ+2sinθ cosθ+cos²θ=3/4+1=7/4
==> (sinθ+cosθ)²=7/4
==> sinθ+cosθ=√7/2 或 -√7/2 (捨去,因為 0<θ<90°)

sinθ+cosθ=7/5
==> (sinθ+cosθ)²=49/25
==> sin²θ+2sinθ cosθ+cos²θ=49/25
==> 2sinθ cosθ=24/25
==> sinθ cosθ=12/25

tanθ cotθ
=1

sin³θ+cos³θ
=(sinθ+cosθ)(sin²θ-sinθ cosθ+cos²θ)
=(7/5)(1-12/25)
=91/125

1/(1+sin²θ)+1/(1+cos²θ)+1/(1+sec²θ)+1/(1+csc²θ)
=1/(1+sin²θ)+1/(1+cos²θ)+cos²θ/(cos²θ+1)+sin²θ/(sin²θ+1)
=(1+sin²θ)/(1+sin²θ)+(1+cos²θ)/(1+cos²θ)
=1+1
=2


收錄日期: 2021-04-16 17:13:02
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150825101153AAJ5Y23

檢視 Wayback Machine 備份