✔ 最佳答案
Σn^4 = (6n^5 + 15n^4 + 10n^3 - n)/30
Σn^5 = (2n^6 + 6n^5 + 5n^4 - n^2)/12
Σn^6 = n(n+1)(2n+1)(3n^4+6n^3-3n+1)/42
使用積分方程式推導公式: a,b = 待定係數 = ?
Σn^(k+1) = a*∫(Σn^k)*dn + b*n
Ex1: Σ1 = n
Σn = ?
= a∫n*dn + b*n
= a*n^2/2 + b*n
邊界條件:
1 = a/2 + b
3 = 2a + 2b
=> a = 1, b=1/2
=> Σn = n^2/2 + n/2 = n(n+1)/2
Ex2: Σn^2 = a∫(n^2+n)/2 + b*n
= a*(n^3/6 + n^2/4) + b*n
邊界條件:
1 = 5a/12 + b
5 = 7a/3 + 2b
=> a = 2, b = 1/6
=> Σn^2 = 2*(n^3/6 + n^2/4) + n/6 = n(n+1)(2n+1)/6
Ex3. Σn^3 = a∫(2n^3+3n^2+n)/2 + b*n
= a*(n^4/2 + n^3 + n^2/2) + b*n
邊界條件:
1 = 2a + b
9 = 18a + 2b
=> a = 1/2, b = 0
=> Σn^3 = (n^4/2 + n^3 + n^2/2)/2
= (n^2 + 2n + 1)*n^2/4
= [n(n+1)/2]^2
其他公式類推