Polynominal problem

2015-08-02 2:49 pm
Please help me to solve this problem.

f(x) is a polynomial of degree 3 and f(1) = 2, f(-2) = -7.
i) Find the remainder if f(x) is divided by x^2 + x - 2.
ii) Find f(x) if f(x) is divisible by 1-3x and f(0) = 5.

回答 (1)

2015-08-02 5:16 pm
✔ 最佳答案
(i) Let Ax+B and Q(x) be the remainder and the quotientwhen f(x) is divided by x²+x-2, so,f(x)=(x²+x-2)Q(x)+Ax+Bf(1)=A+B=2⋯⋯⋯⋯⋯⋯(1)f(-2)=-2A+B=-7⋯⋯⋯⋯(2)(1)-(2) get A=3Sub. into (1) get B=-1∴ the remainder is 3x-1
(ii) f(x)=(x²+x-2)Q(x)+3x-1 =(x²+x-2)Q(x)-(1-3x)As f(x) is divisible by 1-3x, so, Q(x) is 1-3x∴ f(x)=k(x²+x-2)(1-3x)-(1-3x) ⋯⋯ where k is a constantf(0)=5==> k(-2)(1)-1=5==> k=-3∴ f(x)=-3(x²+x-2)(1-3x)-(1-3x) =(3x-1)(3x²+3x-5)

2015-08-02 09:19:59 補充:
so, Q(x) is k(1-3x) ⋯⋯ (missing the letter "k", sorry)


收錄日期: 2021-04-21 00:58:54
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150802000051KK00012

檢視 Wayback Machine 備份