indefinite integral math help?

2015-07-26 11:41 pm
find the indefinite integral

(sec 2x + tan 2x) dx
No upper or lower limits are given
they want me to use the absolute value function

回答 (2)

2015-07-26 11:53 pm
✔ 最佳答案
∫ (sec2x + tan2x dx
= ∫ 1/(cos2x) + sin2x/cos2x dx
= ∫ (1+sin2x) / cos2x dx
= ∫(1+sin2x) / cos2x ∙ (1 - sin2x) / (1 - sin2x) dx
= ∫ 1 - sin²2x / (cos2x(1 - sin2x)) dx
= ∫ cos²2x / (cos2x(1 - sin2x)) dx
= ∫ cos2x / (1 - sin2x) dx

Let u = 1 - sin2x
du = -2cos2x dx → -½du = cos2x dx
In terms of u, the integral is now:
-½ ∫ du/u
= -½ ln|u| + C
= -½ ln |1 - sin2x| + C

You can check it by taking the derivative of -½ ln |1 - sin2x| + C
2015-07-26 11:43 pm
hint : sec 2x + tan 2x = cos 2x / [ 1 - sin 2x]...let w = bottom


收錄日期: 2021-04-21 12:01:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150726154119AAPfm66

檢視 Wayback Machine 備份