✔ 最佳答案
1.
f(x) = x³ - 8x + 8, solve the equation f(x) = 0.
Try f(2) = 2³ - 8(2) + 8 = 8 - 16 + 8 = 0.
Therefore, 2 is a root of f(x) = 0 or (x - 2) is a factor of f(x).
By long division or factorization, consider
f(x)
= x³ - 8x + 8
= x³ - 2x² + 2x² - 4x - 4x + 8
= x²(x - 2) + 2x(x - 2) - 4(x - 2)
= (x - 2)(x² + 2x - 4)
Then, for f(x) = 0
(x - 2)(x² + 2x - 4) = 0
x - 2 = 0 or x² + 2x - 4 = 0
x = 2 or x² + 2x + 1 = 5
x = 2 or (x + 1)² = 5
x = 2 or x = -1 ± √5
2.
(a)
Solve the equation x² + (1 - b)x - b = 0 where b is a constant.
x² + (1 - b)x - b = 0
(x - b)(x + 1) = 0
x = b or x = -1
(b)
Using the result of (a), solve the equation
(log y)² + (log 5)(log y) - log 2 = 0
Let x = log y and note that (log 5) + (log 2) = log 10 = 1, so put b = log 2, then, 1 - b = log 5.
The equation
(log y)² + (log 5)(log y) - log 2 = 0
becomes
x² + (1 - b)x - b = 0
By (a),
x = b or x = -1
That is,
log y = log 2 or log y = -1
y = 2 or y = 10⁻¹
y = 2 or y = 1/10
(c)
Using the result of (b), solve the simultaneous equation:
{a = 5b
{a^(log b) = 2
{a = 5b
{a^(log b) = 2
{log a = log(5b)
{log[a^(log b)] = log 2
{log a = log 5 + log b
{(log a)(log b) = log 2
(log 5 + log b)(log b) = log 2
(log b)² + (log 5)(log b) = log 2
(log b)² + (log 5)(log b) - log 2 = 0
By (b),
b = 2 or b = 1/10
Recall that a = 5b,
when b = 2, a = 5(2) = 10;
when b = 1/10, a = 5(1/10) = 1/2.
Therefore,
{a = 10
{b = 2
or
{a = 1/2
{b = 1/10
3.
Suppose log 2 = a, log 3 = b and log 7 = c.
Express the following numbers in terms of a, b and c. log(sin(π/3))
log(sin(π/3))
= log(√3 / 2)
= log(√3) - log (2)
= (1/2)log(3) - log (2)
= (1/2)b - a
= b/2 - a
2015-07-20 16:46:36 補充:
你正常應該用長除法 (long division),但我在這裏很難可以打出長除法,所以我自己用代數式子自己慢慢寫出 x - 2 這個因式 (factor) 的因式分解 (factorization)。
如果你看書本或者回憶學校的教學,你肯定是學長除法的。
即是知道 x - 2 是 x³ - 8x + 8 的 factor 之後,你會做
_____________
x-2)x³ + 0x² - 8x + 8
...
2015-07-20 19:10:51 補充:
回意見 003:
其實呢題對於一個無讀 M2 的同學是很怪的。
但學學下無妨。
其實在數學上 π 即是 180°。
(原來角度的單位除了度 degree (°) 之外,還有其他,叫 radian 弧度)
因此,π/3 其實是 180°/3 = 60°
sin(π/3) = sin(60°) = √3 / 2
明白嗎?
ヽ(❀ฺ◕ฺ‿ฺ◕ฺ)ノ
2015-07-20 21:20:53 補充:
無錯,邊位都好 老師的方法使用了 恆等式 (identity) 也可以。
總之長除法也好,恆等式也好,回答區的「長除式因式分解」也好,只要可以正確地 factorize 就好了。