math problem

2015-07-14 9:22 pm
1.設G為三角形ABC的重心,令向量AB=a,AC=b,c=a+tb,則向量AG=xa+yb,則(x,y),向量BG=?a+?b
2.正八邊行由最底邊最左邊逆時針分別是OABCDEFG,若每邊長為2,則向量AB,BC,CD=?
3.三角形ABC中A(3,3)B(2,2)C(1+根號3,1-根號3),則向量BA •向量BC=?
4.設向量a=(根號3,1),向量b=(1,0),向量c(0,2),向量d(3,3),分別求向量a&b,c&d之夾角
5.設向量AB=(6,1),BC=(x,y),CD=(-2,-3),若BC平行DA且AC垂直BD,求(x,y)
6.(sinA/1+cosA)+(sinA/1-cosA)-2cscA=
7.x^-x+k=0之二根為tanA cotA,則sinA*cosA=
8.三角形ABC,C的度數為90,若2cosA+3cosB=3,則sinA/sinB=
更新1:

請給算式和答案,謝謝!!

更新2:

絕不會刪帖,有人回答後,立馬選出最佳答案

回答 (4)

2015-07-15 3:18 am
✔ 最佳答案
1.G=ΔABC重心,向量AB=a,AC=b,c=a+t*b,向量AG=x*a+y*b,(x,y),向量BG=?a+?b
BG延長交AC於E點:BE = BA + AE = -a + b/2BG = BE*2/3 = (-a + b/2)*2/3= -2a/3 + b/3= Answer(x,y) = (-2/3,1/3) 2.正8邊形由最底邊最左邊逆時針分別是OABCDEFG,若每邊長為2,則向量AB,BC,CD=?Set O = (0,0)=> A = (2,0)=> B = A + 2*(√2/2, √2/2)= (2,0) + (√2,√2)= (2+√2,√2)=> C = B + (0,2) = (2+√2,2+√2) => D = C + (-√2,√2) = (2,2+2√2)=> AB = B - A = (√2,√2) = √2*(1,1)=> BC = C - B = (0,2) = 2*(0,1)=> CD = D - C = (-√2,√2) = √2*(-1,1) 3.ΔABC: A(3,3),B(2,2),C(1+√3,1-√3),則向量BA•向量BC=?BA = B - A= (2,2) - (3,3)= (-1,-1)BC = C - B= (1+√3,1-√3) - (2,2)= (-1+√3,-1-√3)BA.BC = -1*(-1+√3) + 1*(1+√3) = 2 4.向量a=(√3,1),向量b=(1,0),向量c=(0,2),向量d=(3,3),求向量a&b,c&d之夾角cosA = a.b/|a|*|b|= √3 / 2*1= √3/2A = 30 deg
cosB = c.d / |c|*|d|= 6 / 2*3√2= 1/√2B = 45 deg

2015-07-14 19:45:33 補充:
5.向量AB=(6,1),BC=(x,y),CD=(-2,-3),BC//DA,AC垂直BD,求(x,y)

0 = AB + BC + CD + DA

= (6,1) + (x,y) + (-2,-3) + (kx,ky)

= (4+(k+1)x,-2+(k+1)y)

=> x = -4/(k+1), y = 2/(k+1)


AC = AB + BC

= (x+6, y+1)

= (-4/(k+1)+6, 2/(k+1)+1)

= (6k+2,k+3)/(k+1)

2015-07-14 19:46:18 補充:
BD = BC + CD

= (x,y) + (-2,-3)

= (x-2, y-3)

= (-4/(k+1)-2, 2/(k+1)-3)

= (-2k-6,-3k-1)/(k+1)


0 = AC.BD

= (6k+2)(2k+6) + (k+3)(3k+1)

= 15k^2 + 50k +15

= 5*(3k^2 + 10k + 3)

= 5(3k+1)(k+3)

=> k = 3 or -1/3

=> x = -1, y = 1/2

2015-07-14 20:15:53 補充:
=> or x = -6, y = 3


6.sinA/(1+cosA) + sinA/(1-cosA) - 2cscA = ?

= [sinA(1-cosA) + sinA(1+cosA)]/(1-cos^2A) - 2/sinA

= sinA/sin^2A - 2/sinA

= (1-2)/sinA

= - 1/sinA

= - cscA

2015-07-14 20:17:26 補充:
6修改:

2/ainA - 2/sinA = 0

2015-07-14 20:21:32 補充:
7.x^-x+k=0之二根為tanA cotA,則sinA*cosA=?

k = tanA*cotA = 1

1 = 兩根和

= tanA + cotA

= sinA/cosA + cosA/sinA

= (sin^2A + cos^2A)/sinA*cosA

= 1/sinA*cosA

=> sinA*cosA = 1

2015-07-14 20:49:49 補充:
8.三角形ABC,C的度數為90,若2cosA+3cosB=3,則sinA/sinB=


射影定律:

b*cosA + a*cosB = c

b = 2k, a= 3k


正弦定律:

sinA/sinB = a/b

= 2k/3k

= 2/3

= Answer

2015-07-14 21:08:03 補充:
如果 C = 90 deg

則可以求取諸邊長,商高定理:

(4 + 9)k^2 = 13k^2

= c^2

= 3^2



=> k = 3/√13

=> b = 2k = 6/√13

=> a = 3k = 9/√13

2015-07-15 06:26:56 補充:
打顛倒修改: sinA/sinB = a/b = 3/2

第5題漏打負號修改:

(x,y) = (2,-1) for k = -3

(x,y) = (6,-3) for k = -1/3

2015-07-15 06:32:13 補充:
第3題位置顛倒修改:

BA = A - B = (1,1)

=> BA.BC = -2
2015-07-15 4:58 pm
匿名的不答

可能會刪帖的不答

拿著練習簿一題一題的問的不答

這邊的都沒有甚麼可答了

再見
2015-07-14 11:13 pm
刪問題不知意義何在,點數也不會回來
2015-07-14 10:06 pm
剛才剛剛答了一題匿名發問的題目,就答畢後隨即就被刪除,所以請有待發問者澄清不會刪帖後再作回答吧。

2015-07-14 15:43:52 補充:
刪問題意義在於別人不知道他曾經發問過,無辜的作答者除外。

2015-07-15 02:40:18 補充:
╭∧---∧╮
│ .✪‿✪ │
╰/) ⋈ (\\╯


收錄日期: 2021-04-30 19:50:37
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150714000015KK03853

檢視 Wayback Machine 備份