Find the minimum value

2015-07-10 8:15 pm
If f(x) = x² + 47x + 18 where x is a positive integer,find the minimum value of x such that f(x) is divisible by 79.

回答 (6)

2015-07-11 6:46 pm
✔ 最佳答案
窮舉是辦法,但不是好方法。

2015-07-10 20:18:00 補充:
若 15 是其中一個答案,則 15+79 亦是答案。

2015-07-11 10:46:13 補充:
x²+47x+18 ≡ 0 (mod 79)==> x²+47x-79x+18+237 ≡ 0 (mod 79)==> x²-32x+255 ≡ 0 (mod 79)==> (x-15)(x-17) ≡ 0 (mod 79)==> x-15 ≡ 0 (mod 79) or x-17 ≡ 0 (mod 79)==> x=15, 94, ... or x=17, 96, ...
∴ the minimum value of x is 15.
The sum of all possible values of x less than 100 is :15+94+17+96=222

2015-07-12 10:12:12 補充:
因為要 factorize "x² + 47x + 18 + 79p", 但沒有適合的p
但 x² - 32x + 18 + 79p 可以找出 p=3 做得到。
2015-07-11 6:43 am
Yahoo 老師,唔會又係撞吧!

2015-07-11 17:41:11 補充:
Yahoo 老師,唔該曬,明白。

少年 老師,你係點諗到要減79x而且又加237嫁?
2015-07-11 5:23 am
Sum=15+17+94+96=222

2015-07-11 12:29:24 補充:
邊位 老師,其實我哥個方法係Given左其中1個數係15
http://s27.postimg.org/gu5da2sa9/image.png

或者你應該看看少年時 大師的做法 =)
2015-07-11 12:19 am
If f(x)=x^2+47x+18 where x is a positiveinteger,find theminimum value of x such
that f(x) is divisible by 79
So
x^2+47x+18=79p
x^2+2*x*(47/2)+(47/2)^2=79p+(47/2)^2-18
(x+47/2)=79p+2209/4-18
(2x+47)^2=316p+2137
(1) x=1
p=0.835
(2) x=2
p=1.468
(3) x=3
p=2.126
(4) x=4
p=2.810
(5) x=5
p=3.5189
(6) x=6
p=4.2531
(7) x=7
p=5.012
(8) x=8
p=5.797
(9) x=9
p=6.607
(10) x=10
p=7.443
(11) x=11
p=7.870
(12) x=12
p=9.189
(13) x=13
p=20.607
(14) x=14
p=11.037
(15) x=15
p=12
minx=15

2015-07-10 11:10 pm
Sorry, overlooked.
2015-07-10 10:02 pm
似這個類型:

https://tw.knowledge.yahoo.com/question/question?qid=1015070701821

2015-07-10 15:07:33 補充:
土扁 大哥,"x is a positive integer".


收錄日期: 2021-04-16 16:59:13
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150710000051KK00020

檢視 Wayback Machine 備份